Exponential Ergodicity of a Degenerate Age-Size Piecewise Deterministic Process

نویسندگان

چکیده

We study the long-time behaviour of a non conservative piecewise deterministic measure-valued Markov process modelling proliferation an age-and-size structured population, which generalises “adder” model bacterial growth. Firstly, we prove existence eigenelements associated infinitesimal generator, are used to bring ourselves back using Doob $h$ -transform. Finally, obtain exponential ergodicity via drift-minorisation arguments. Specifically, show “petiteness” compact sets state space. This permits circumvent difficulties encountered when trying construct mixing trajectories at fixed uniform time on unbounded two-dimensional space with only advection and degenerate jump terms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Exponential-Size Deterministic Zielonka Automata

The well-known algorithm of Zielonka describes how to transform automatically a sequential automaton into a deterministic asynchronous trace automaton. In this paper, we improve the construction of deterministic asynchronous automata from finite state automaton. Our construction improves the well-known construction in that the size of the asynchronous automaton is simply exponential in both the...

متن کامل

Exponential and Piecewise Exponential Distributions

Since lifetimes are almost always non-negative, the normal model/distribution may not be appropriate. An easy to use, positive distribution is the exponential distribution. To a less extend, exponential distributions to the survival analysis is like normal distributions to the linear model/ANOVA. Piecewise exponential distribution is also used to bridge/connect the parametric and nonparametric ...

متن کامل

On exponential ergodicity of multiclass queueing networks

One of the key performance measures in queueing systems is the exponential decay rate of the steady-state tail probabilities of the queue lengths. It is known that if a corresponding fluid model is stable and the stochastic primitives have finite moments, then the queue lengths also have finite moments, so that the tail probability P(· > s) decays faster than s−n for any n. It is natural to con...

متن کامل

Exponential Regret Bounds for Gaussian Process Bandits with Deterministic Observations

This paper analyzes the problem of Gaussian process (GP) bandits with deterministic observations. The analysis uses a branch and bound algorithm that is related to the UCB algorithm of (Srinivas et al., 2010). For GPs with Gaussian observation noise, with variance strictly greater than zero, (Srinivas et al., 2010) proved that the regret vanishes at the approximate rate of O ( 1 √ t ) , where t...

متن کامل

Moment equations for a piecewise deterministic PDE

We analyze a piecewise deterministic PDE consisting of the diffusion equation on a finite interval Ω with randomly switching boundary conditions and diffusion coefficient. We proceed by spatially discretizing the diffusion equation using finite differences and constructing the Chapman–Kolmogorov (CK) equation for the resulting finite-dimensional stochastic hybrid system. We show how the CK equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Applicandae Mathematicae

سال: 2023

ISSN: ['1572-9036', '0167-8019']

DOI: https://doi.org/10.1007/s10440-023-00597-z